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Oncology is one of the fields that are undergoing transformation due to artificial intelligence 

(AI) and big data, which is changing the manner in which cancer is identified, diagnosed, and 

treated. Machine learning and deep learning algorithms allow learning to be analyzed with vast 

and high-dimensional datasets- medical imaging, genomics, pathology slides, electronic health 

records (EHRs), and wearable devices. Such technologies make it possible to extract the hidden 

patterns that human specialists can hardly notice, facilitating earlier and more correct cancer 

detection. As an example, AI-based image recognition can detect suspicious radiology scans or 

histopathology slides, and multi-omics integration (genomics, transcriptomics, proteomics, 

metabolomics) can help improve the knowledge base in tumor biology and inform 

individualized treatments. The AI systems also enhance the predictions of prognoses by 

integrating data between registries and actual clinical practice to enable clinicians to predict 

disease progression and intervene. 

The clinical accuracy of AI and big data in oncology is not the only area of promise to make it 

efficient and accessible to cancer care. Automatic workflows have the potential to save 

clinicians time in which they can focus on complicated decision-making and interacting with 

patients. Such predictor models will be used based on large-scale data to prescribe personalized 

treatment regimens, such that each patient is provided with a treatment regimen that is expected 

to be most effective and reduce potential harmful side effects. Wearables and remote 

monitoring also increase the scope of oncology care and allow continuous monitoring of 

patients and providing real-time adjustment of their treatment. Nevertheless, to achieve these 

advantages, one will have to face significant issues: technical barriers of data standardization 

and interoperability; clinical-related problems with reliability, bias, and generalizability of AI 

models; and legal and ethical concerns of patient privacy, responsibility, and the danger of over-

reliance on algorithms. 

Finally, the merger of AI and big data in the field of oncology should not be concerned with 

the substitution of the clinician but rather with the abilities. Strict validation with different 

patients, open model development, and collaboration between humans and AI are needed to 

make adoption safe and fair. Oncology is headed to a future in which precision medicine is not 

only aspirational but also operational, in which the treatment of each patient is directed by real-

time, data-driven insights that enhance outcomes and quality of life. Though promising, this 

paradigm shift relies on the balance between innovativeness and responsibility, and makes sure 
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that the power of AI can be used to complement human expertise and provide cancer care that 

is truly personalized. 

8.1. MACHINE LEARNING MODELS FOR DIAGNOSIS AND TREATMENT 

PLANNING 

Machine learning in oncology combines a variety of methods: supervised to recognize tumors 

and classify them, unsupervised to identify subtle subtypes, semi-supervised to learn scarce 

labels, reinforcement learning to adaptive treatment plans, and graph-based learning to learn 

complex biological interactions. These models are based on multi-modal inputs (such as 

medical imaging, digital pathology slides, molecular omics, clinical records and longitudinal 

time-series data). Radiomics, deep learning, and sophisticated NLP methods enable AI to 

improve the diagnosis, prognosis, personalization of treatment, and matching of the trial, 

greatly enhancing precision medicine. 

The construction of AI systems in oncology has a workflow: sources such as EHRs, imaging 

archives, and genomics are gathered and refined; preprocessing operations are used to clean 

and standardize the data; experts are labeled; and representation learning happens using hand-

crafted or deep features. Cross-validation is used to train and validate the models and test them 

against clinically relevant metrics, then implemented in clinical workflows with continuous 

monitoring. Nevertheless, there are still challenges such as the imbalance in classes, changes 

of domains between institutions, noisy labels, the overfitting risks, and interpretability. 

Harmonization, domain adaptation, explainable AI, and rigorous validation are essential to 

tackle such problems and develop trustworthy generalizable systems that can really change the 

face of cancer care. 

 Kinds of Machine Learning Used 

Machine learning in oncology cuts across several different directions: supervised learning on 

labeled tasks such as tumor classification, unsupervised learning on the hidden patient 

subtypes, and semi-supervised learning that uses limited labels. Reinforcement learning is used 

to maximize dynamic treatment plans and graph-based learning is used to model the intricate 

biological and patient interactions in order to forecast and tailor care. 

 Supervised learning: The most widely used form of machine learning in oncology is 

supervised learning, in which models are trained on labeled data (where labels 

correspond to the outcome e.g., a benign or malignant tumor). Supervised models are 
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models trained to map input features to target labels. Standard algorithms can be logistic 

regression and support vector machines (SVMs) on structured clinical data, random 

forests and gradient-boosted trees (XGBoost, LightGBM) on tabular or heterogeneous 

data, and deep learning models such as convolutional neural networks (CNNs) on 

imaging (e.g., tumor detection in CT scans) and transformers on sequential or textual 

data (e.g., mining information in electronic health records). 

 Unsupervised learning: This method can be applied in case explicit labels are not 

available. It identifies latent patterns in data, e.g., how to cluster patients into new 

subtypes or dimensionality of high-dimensional data (e.g. gene expression profiles). 

Patient stratification can be achieved with such methods as clustering (k-means, 

hierarchical clustering) and dimensionality reduction (PCA, t-SNE, UMAP), which can 

be used to identify possible biological mechanisms and formulate new hypotheses on 

cancer progression and therapy. 

 Semi-supervised / weakly supervised learning: Medical data are costly to label, and 

detailed labels are often unavailable, so semi-supervised models use small labeled 

amounts of data with large quantities of unlabeled data. As an illustration, pathology 

slides can be simply labeled only at the slide-level (cancerous vs. non-cancerous), and 

not pixel-by-pixel. Weak label methods such as Multiple Instance Learning (MIL) and 

pseudo-labeling enable the model to utilize weak labels in generating higher accuracy. 

 Reinforcement learning (RL): One of the recent research fields in the field of 

oncology, RL is concerned with decision-making in sequences. An RL agent tries to 

learn policies that maximize long-term goals, by planning actions, i.e., sequences of 

interventions, i.e., switching chemotherapy doses or radiation schedules, or adaptive 

treatment schedules. RL is able to model treatment as a dynamic process to personalize 

strategies to optimize survival or reduce toxicity. 

 Graph/relational learning: Biological systems and the relationship between patients 

are graphs by nature. Graph neural networks (GNNs) are employed to learn graph 

models of molecular interaction networks (proteinprotein, gene regulatory), tumor 

microenvironmental celldynamics, or patient similarity graphs. This enables learning 

of relationships and not only individual features to predict drug response and patient 

outcomes. 
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 Input Data Types and Representations 

Oncology makes use of varied sources of data: medical imaging and digital pathology to 

characterize tumors, multi-omics to provide molecular information and clinical/EHR to 

provide patient context. Longitudinal time-series data also represent the trajectories of disease, 

and the models of AI use these modalities together to enhance the process of diagnosis, 

prognosis, and treatment personalization. 

 Core inputs include medical imaging (CT, MRI, PET, and ultrasound): They can 

be explored as is in 2D/3D arrays (voxels) or converted into radiomics features of tumor 

morphology, intensity distributions, and textural characteristics. Deep learning methods 

commonly operate on raw imaging, whereas radiomics-based methods operate on 

handcrafted descriptors. 

 Digital pathology: Whole-slide images (WSIs) are gigapixel scans of tissue sections, 

which are extremely large. They are normally divisible into small areas to be analyzed 

computationally. Multiple Instance Learning combines patch-level features in making 

diagnoses at slide-level. Methods such as stain normalization minimize variability 

caused by the various labs or scanners. 

 Molecular data (omics): molecular-level data include genomic (abnormalities in DNA 

mutations, copy-number variations), transcriptomic (RNA expression), proteomic, and 

epigenomic (DNA methylation) data. These datasets can be highly dimensional and 

hence dimensionality reduction, feature selection or embedding methods are performed 

prior to modeling. 

 Clinical data: Consists of structured information, e.g. demographics, comorbidities, 

medications, lab findings, etc. Electronic health records are converted to unstructured 

notes which are then transformed into structured features by natural language 

processing (NLP), frequently through transformers (e.g., Bio BERT, Clinical BERT). 

 Longitudinal/time-series data: Patient journeys are series of measures, such as 

follow-up imaging, lab values, treatment schedule. RNNs, temporal convolutional 

networks (TCNs), transformers learn temporal dependencies to forecast progression, 

recurrence or treatment outcomes. 

 Typical Tasks in Oncology 

AI in oncology supports diagnosis, tumor subtyping, prognosis modeling, and prediction of 

treatment response or toxicity. It also automates treatment planning tasks and enables precise 

clinical trial matching, driving more personalized and efficient cancer care. 
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 Diagnosis and detection: AI systems can assist in identifying suspicious lesions on 

medical imaging scans or detecting cancer cells in pathology slides. By automating 

initial screening and highlighting areas of concern, these tools improve diagnostic 

efficiency, reduce human error, and support early detection of malignancies. 

 Classification and subtyping: Algorithms can distinguish histological or molecular 

subtypes of tumors, which is critical for guiding targeted therapies. Accurate subtyping 

enables clinicians to select the most effective treatment strategy, avoiding unnecessary 

interventions and aligning therapy with the underlying tumor biology. 

 Prognosis modeling: AI can predict survival times, recurrence risk, or other time-to-

event outcomes using approaches such as Cox proportional hazards models, survival 

forests, or deep learning-based survival models. These prognostic predictions support 

risk stratification, patient counseling, and prioritization of care interventions. 

 Treatment response prediction: Predictive models estimate which patients are likely 

to respond to specific treatments�including chemotherapy, targeted therapies, or 

immunotherapies�allowing clinicians to personalize treatment selection and improve 

therapeutic efficacy while reducing exposure to ineffective interventions. 

 Toxicity prediction: AI can forecast potential adverse effects, such as chemotherapy-

induced cardiotoxicity or immune-related side effects, based on patient-specific clinical 

and molecular data. Early identification of high-risk patients facilitates preventative 

strategies and improves patient safety and quality of life. 

 Treatment planning automation: AI streamlines labor-intensive clinical tasks, such 

as contouring tumor regions in radiotherapy or optimizing radiation dose schedules. By 

automating these processes, clinicians save time, reduce variability, and increase the 

precision of treatment delivery. 

 Clinical trial matching: Integrating multi-modal patient data including genomic 

profiles, imaging, and clinical characteristics AI can match patients with suitable 

clinical trials. This accelerates enrollment, expands access to experimental therapies, 

and ensures that patients receive interventions most relevant to their disease profile. 
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 Modeling Workflow (Practical Steps) 

The process of AI development in oncology can produce multi-source data, standardize it, pre-

process and label the data, and finally run the feature engineering or deep learning to represent 

the data. Clinically relevant metrics are used to train, validate and evaluate models, and then 

deployed into workflows, with continuous monitoring and retraining of the model maintained 

to ensure reliability. 

1. Information gathering and management: Use a variety of data sources on patients, 

such as electronic health records (EHRs), imaging repositories, and genomic or 

proteomic databases. Normalize data formats- like the use of DICOM in imaging to 

provide uniformity. Anonymize sensitive data about a patient to achieve privacy and 

compatibility of datasets in different institutions to conduct multicenter research and 

enhance the ability of a model to be generalized across institutions. 

2. Preprocessing: Clean up and make ready raw data to be analyzed, using domain-

specific normalization and cleaning. In imaging, image intensity values can be 

normalized, stain can be normalized in pathology slides, tiles can be patched whole-

slide images (WSIs), and artifact removal can occur. In the case of omics data, counts 

should be normalized, batch effects corrected and missing values should be addressed 

to ensure that downstream analyses are those that capture biology as opposed to 

technical noise. 

3. Labeling: label datasets with clinically validated outcomes, pathology reports, or 

expert-reviewed labels. Labeling is also time consuming and can be influenced by inter-

observer errors, such that consensus review, quality control and standard annotation 

protocols are important in ensuring consistent model training. 

4. Feature engineering / representation learning: Derive meaningful features of inputs 

in a manual or automatic way. Radiomics metrics, clinical scores, or lab values can be 

used as handcraft features, and hierarchical representations may be learned directly by 

deep learning models using raw data. Pre-trained model transfer learning can be 

especially useful when training data is scarce and the large labeled data is not necessary 

and it takes less time to develop models. 

5. Training and validation: Split data into training, validation and test sets to construct 

and evaluate model behaviour. Use cross-validation or nested cross-validation to find 
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the best hyperparameters and decrease overfitting. Test models in external, independent 

cohorts to prove the strength and applicability across a variety of patient groups and 

clinical environments. 

6. Measurement metrics: Measure performance of the models based on clinically 

relevant metrics, especially in the case of class imbalance. The metrics are sensitivity, 

specificity, precision, recall, and F1-score, AUC-ROC, AUPRC, Brier score, calibration 

curves, and decision curve analysis used to assess the net clinical benefit of the model. 

The correct choice of metrics guarantees that the results of the model will be sensible 

and applicable to a practical application. 

7. Deployment and monitoring: Implement accepted AI models into clinical practice-

such as into PACS systems as radiology models or EHR-based decision support 

systems. Track model performance on drift over time, retraining and updating models 

when needed to ensure accuracy and clinical reliability in dynamically changing 

healthcare settings. 

 Key Technical Challenges 

Oncology AI is associated with issues such as class imbalance, domain shift, label noise, 

overfitting, and low interpretability. The solutions to these involve the strong validation, 

alignment of data, weak supervision and explainable AI techniques to promote reliable, 

generalizable, and trustworthy clinical use. 

 Class imbalance: Rare cancers or unusual clinical outcomes may biase the model 

training, resulting in low performance on low-represented classes. The measures that 

may be taken to mitigate this problem are resampling (oversampling those few classes 

that are hard to classify or under sampling those common classes that are easy to 

classify), class weighting when computing losses, focal loss functions that tend to 

emphasize those hard to classify examples, and selecting evaluation metrics carefully 

that can accommodate the imbalanced data. Those methods can be used to make sure 

that models are effective at generalizing to common and rare cases. 

 Domain shift: The portability of trained models to new clinical settings may be reduced 

by changes in imaging equipment, pathology staining protocols or differences in patient 

populations. Such methods as domain adaptation, data harmonization, and federated 
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learning can be used to reduce such changes so that a model can be effective across a 

variety of healthcare settings without overlooking data privacy. 

 Label noise and inter-observer variability: The variation among expert labels may 

induce label noise, particularly in problems such as histopathology or radiology 

interpretation. General approaches to dealing with this comprise consensus annotations 

with multiple experts, weak supervision methods that exploit partially labelled or noisy 

data, and probabilistic modeling to directly model the uncertainty of labels and enhance 

model robustness and reliability. 

 Data leakage and overfitting: large-capacity models learned on small datasets will 

tend to memorize and not generalize. Strict validation procedures such as external test 

sets and cross-validation procedures and cautious experimental design are necessary to 

prevent overfitting and to make sure model performance is indicative of real-world 

applicability. 

 Interpretability: Clinicians need clear explanations and uncertainty estimates which 

are calibrated in order to trust AI predictions. Saliency maps, attention mechanisms, 

Shapley values, and counterfactual reasoning are methods that offer insights into how 

a model makes decisions, i.e. which features or situations are relevant (and also 

influencing) to a prediction. These approaches contribute to clinician confidence by 

increasing interpretability and enabling a safe implementation of AI tools in clinical 

practice. 

8.2. AI IN HISTOPATHOLOGY AND RADIOLOGY 

The machine learning approach to histopathology is based on the whole-slide images (WSIs) 

High-resolution scans of tissue samples that are split into smaller patches to be examined by 

convolutional neural networks (CNNs). The output of these patches is aggregated with multiple 

instance learning (MIL) to produce slide- or patient-level diagnoses. The major tasks that AI 

assists with are tumor identification, grading (e.g., Gleason score), mitosis rate, TIL, and 

anticipation of molecular changes on the basis of H&E slides. Such techniques as attention 

mechanisms, cell segmentation (U-Net), clustering, and spatial analysis can boost the 

performance of the models, whereas preprocessing steps, in particular, stain normalization, 

artifact detection, and efficient tiling, provide the robustness. In clinical practice, AI accelerated 

slide triage, decreased inter-pathologist variability, offered second opinions and quantitative 
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biomarkers to inform precision medicine, but there are issues with large file sizes, inter-scanner 

generalizability, expensive annotations, and regulatory barriers. 

 

Figure 1: AI Integration in Digital Pathology Workflow 

Source: (https://www.mdpi.com/2075-4418/12/11/2794) 

In radiology, AI enhances diagnostic accuracy, efficiency and quantitative measurements by 

the detection of lesions, automated tumor/organ segmentation, radiomic feature mining, 

RECIST-based response evaluation, prognostic modeling and optimization of radiation dosing. 

Models include 2D/3D CNNs, encoder-decoder models (U-Net) to vision transformers and 

multi-modal fusion models that combine PET-CT information. Radiomics provides 

interpretable, engineered features, whereas deep learning provides hierarchical patterns; a 

combination between the two improves predictive power and clinical transparency. PACS 

integration also facilitates triaging, follow-up and workflow, and interpretability (Grad-CAM, 

saliency maps) and uncertainty estimation (Bayesian networks, Monte Carlo dropout) are used 

to guarantee reliability so that AI can supplement, and not replace, radiologists in clinical 

practice. 

AI in Histopathology: 

 Digital Pathology Pipeline: The healthcare sector is starting to implement AI in 

histopathology with whole slide images (WSIs), which are very high-resolution scans 

of tissue samples in digital format. WSIs are huge in size, thus they are cut down into 

smaller tiles or patches. A patch-level model (typically a convolutional neural network 
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(CNN)) processes every patch and is capable of detecting subtle tissue features (e.g. 

abnormal cells, mitoses or tumor regions). Individual patch predictions are then 

combined via techniques, such as multiple instance learning (MIL) to generate a slide-

level or patient-level diagnosis. This pipeline allows the analysis of whole tissue slides 

to be done with the efficiency and accuracy of AI so that they can assist pathologists in 

their clinical workflows. 

 Histopathology AI Tasks: AI models are used in various major pathology tasks. Tumor 

detection assists in localizing cancerous areas in a short time, and tumor severity is 

determined by the use of grading system like the Gleason score in the case of prostate 

cancer. Mitosis can as well be detected using AI to determine the presence of dividing 

cells that can be used to gauge proliferation rates in tumors. The other important 

application is the quantification of tumor-infiltrating lymphocytes (TILs) that can be 

used as a prognostic biomarker. Also, AI is able to detect molecular changes, like 

mutation status or microsatellite instability, on H&E-stained slides, potentially saving 

the cost of costly genetic testing. 

 Techniques: A number of AI techniques can improve the analysis of histopathology. 

CNNs learn to extract image patches; MIL de-patchify patch predictions and slide-level 

predictions. The model can be focused on clinically significant areas by attention 

mechanisms. Models of cell segmentation (typically variants of U-Nets) are used to 

label individual cells, and clustering algorithms are used to separate cells into 

phenotypes using morphological features. The spatial analysis methods are used to 

study cellular neighborhoods and tumor microenvironment to get further prognostic 

data. 

 Preprocessing Requirements: Model performance is highly dependent on the strength 

of preprocessing. Normalization of stains decreases the variation of various scanners 

and staining conditions. The size of WSIs needs to be addressed with an efficient tiling 

strategy. Artifacts like a fold in tissue, pen marks or debris that can disrupt analysis are 

also detected by AI pipelines. Lastly, high quality labelled data to train in a supervised 

fashion must be generated using annotation tools, but these annotations are costly in 

terms of time to generate and must be annotated by trained pathologists. 

 Clinical Value: AI has a significant clinical value in histopathology. With AI, the triage 

of slides is quicker, with urgent cases given priority and the time taken is minimized. It 

may be used as a second-opinion system, which reduces the differences in the opinion 
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of pathologists. AI also supplements pathologist workflow instead of substituting it with 

quantitative biomarker outputs (e.g., TIL counts and measures of heterogeneity) to 

inform treatment decisions. These understandings aid in the field of precision medicine 

and should improve the accuracy of diagnoses. 

 Limitations: AI in histopathology has a number of obstacles to its potential. WSIs are 

very large in file sizes, which require large amounts of storage and computing 

resources. Models should be general to various staining protocols and scanners and this 

is not always easy. Annotations of high quality are expensive and time consuming and 

need trained pathologists. Lastly, acceptance by regulatory bodies is another challenge 

since medical implementation must be strictly validated and adhered to medical 

regulations. 

AI in Radiology: 

 Usual Processes: AI in radiology is oriented toward better diagnostic accuracy, 

efficiency, and quantitative measurements. Applications are lesion and characterization, 

automated segmentation of tumors and organs, and quantitative imaging biomarkers 

(radiomics) to provide shape, texture, and intensity biomarkers. Assessment of 

responses can also be enhanced using AI to automate the RECIST result, create 

prognostic signatures to predict outcomes, and optimize the radiation dose to reduce 

patient exposure. 

 Types of models: AI in radiology utilizes a variety of architectures. 2D and 3D CNNs 

are popular in image classification and segmentation. Encoder-decoder designs like U-

Net do automate high quality segmentation. Multi-modal fusion brings together data of 

modalities such as PET and CT to enhance diagnosis. Vision transformers have recently 

been used on large scale imaging data sets, which offer strong feature extraction 

functionality. 

 Radiomics vs Deep Learning: Radiomics entails mining engineered characteristics of 

images, including tumor shape, texture, and intensity, and such features can be read-out 

in clinical terms. Deep learning (as opposed to it) learns features hierarchically 

automatically but is not always interpretable. Integrating the two methods can help in 

balancing predictive power and explainability that can be used in clinics. 

 Clinical Workflow integration: AI tools may be integrated in PACS (Picture 

Archiving and Communication Systems) as CAD-like assistants, triaging radiologists 

scans by highlighting high-risk images and workloading scans. The follow-up can be 
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monitored with automated measurements that will allow managing patients more 

efficiently. Multi-centric research and compliance with the DICOM standards 

guarantee the generalizability of AI tools between the population and imaging devices. 

 Interpretability and Uncertainty Estimation: To be clinically adopted safely, AI 

should be interpretable and reliable. Such visual explanation methods as Grad-CAM, 

saliency maps, and attention heatmaps accentuate parts of images that contributed to 

model predictions, enhancing transparency. Bayesian networks, Monte Carlo dropout, 

or ensemble methods, called uncertainty estimation, give confidence intervals on the 

predictions of the use of Bayesian networks. The cases with lower confidence could be 

sent to human review, so the AI would assist instead of substitute the clinical judgment. 

8.3. PRECISION TREATMENT PATHWAYS DRIVEN BY PREDICTIVE 

ALGORITHMS 

Accuracy of therapy pathways can be seen as a paradigm shift in oncology, shifting away from 

the generalized treatment plans in the favor of the personalized data-based care. The pathways 

combine in-depth molecular-profiling of a patient with a tumor with clinical data including the 

stage of the disease, comorbid conditions and previous treatment outcomes. Using this detailed 

data, clinicians can determine treatments that are most likely to work with a particular patient, 

decide on the best order to use, and think about combination approaches that increase efficacy 

and minimize possible side effects. The given approach is necessary to make sure that the 

treatment decisions are not made on the basis of population averages only but depend on the 

individual biology and clinical circumstances of the patient. 

In addition to the optimization of therapy, precision treatment pathways to patients refer them 

to suitable clinical trials and provide access to new therapies that are focused on their tumor 

features. These pathways promote the concept of shared decision-making, including patient 

preferences, values and quality-of-life issues in the care plan. Through a systematic integration 

of molecular understanding, clinical experiences, and patient-centered considerations, 

precision treatment pathways can maximize treatment results, reduce unnecessary treatments 

and develop a more effective, focused, and personalized approach to cancer management. 
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Figure 2: Precision Treatment Pathways 

Source: (https://www.researchgate.net/figure/Precision-medicine-and-personalized-

treatment-process-for-immunotherapies-The-diagram_fig5_383037818) 

 How Predictive Algorithms Support Precision Pathways 

As the most important role, predictive algorithms are designed and implemented to implement 

precision treatment pathways in oncology, which will allow providing more personalized care 

to patients more effectively and safely: 

 Biomarker discovery/prediction: Machine learning, statistical models could be used 

to study large-scale genomic, transcriptomic, or proteomic data to predict biomarkers 

that predict therapeutic efficacy or resistance. Such predictive markers are used to assist 

clinicians in choosing the most appropriate treatments based on the molecular profile 

of the patient tumor, where the choice of therapies is evidence based and patient-

specific. 

 Treatment response models: Predictive algorithms can be used to estimate response 

to certain therapies by patients, including immunotherapy compared to conventional 

chemotherapy. Stratifying patients based on predicted response enables clinicians to 
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focus on the most likely-to-succeed treatments, reducing avoidable exposure to 

unhelpful lines of intervention, and maximizing overall results. 

 Toxicity models: Algorithms are able to forecast the risk of severe adverse events in 

individual patients depending on molecular, clinical and demographic data. Such 

models facilitate safer therapy choice, which can prevent regimens that could impair 

patient safety or quality of life, and proactively manage possible toxicities. 

 Trial matching/prioritization: AI systems can be able to match patients to ideal 

clinical trials by combining molecular profiles, disease stage, and eligibility criteria. 

This broadens exposure to experimental treatments, hastens enrollment of patients in 

trials and facilitates more effective assessment of innovative treatment. 

 Treatment sequencing and optimization: Advanced predictive algorithms, 

reinforcement learning and causal inference models, can prescribe the ideal order of 

treatment. This involves choices on adjuvant or neoadjuvant therapy, choice of 

chemotherapy regimen, addition of targeted agents, or combination of all of these so as 

to maximize clinical benefit and reduce unnecessary interventions. 

 Besides that, predictive algorithms can also be used in drug repurposing: With big 

datasets in biomedical science, new opportunities of available drugs can be identified, 

even if they have not been previously known to have a drug-tumor fit. This will aid in 

drug repurposing plans, which will provide economical alternatives and hasten the 

transfer of the existing treatments to serve certain patient groups. 

Modeling Approaches: 

Several computational strategies are employed to generate precision treatment pathways in 

oncology: 

 Multi-omics integration: Integrating multiple layers of biological data�including 

genomic, transcriptomic, and proteomic information�enables a more comprehensive 

understanding of tumor biology. Strategies include early fusion, where features from 

different omics datasets are concatenated into a single input for modeling; late fusion, 

which combines outputs from separate models in an ensemble approach; and hybrid 

approaches that blend the two. Additionally, graph-based models can represent 

molecular pathways, interactions, and network effects, capturing the complex 
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relationships among genes, proteins, and signaling networks to inform therapy 

selection. 

 Causal inference: To distinguish true treatment effects from spurious correlations, 

causal inference methods such as Average Treatment Effect (ATE) and Conditional 

Average Treatment Effect (CATE) are used. These approaches estimate the direct 

impact of a specific therapy on patient outcomes, accounting for confounding variables 

and heterogeneity in patient responses. By quantifying causal relationships, these 

methods strengthen the reliability of treatment recommendations derived from 

predictive models. 

 Counterfactual explanations: Counterfactual reasoning techniques simulate how 

patient outcomes might differ under alternative treatment scenarios. By demonstrating 

�what-if� outcomes, these methods provide a transparent basis for shared decision-

making between clinicians and patients, helping to explain why a particular therapy is 

recommended and what potential benefits or risks may arise under other treatment 

options. 

 Clinical Decision Support (CDS): Predictive model outputs can be integrated into 

clinical decision support systems, often accompanied by evidence summaries, 

confidence scores, and visualizations of expected outcomes. These systems assist tumor 

boards and clinicians in making informed, evidence-based decisions while emphasizing 

that AI serves to augment not replace human judgment. By presenting actionable 

insights alongside uncertainty estimates, CDS tools enhance decision quality and 

facilitate personalized care. 

Validation and Evidence: 

To make precision treatment algorithms reliable for implementation in clinical practice, they 

have to be rigorously vetted so that their safety, effectiveness, and applicability can be ensured 

in a wide range of patient populations. Validation is usually initiated by retrospective analyses, 

in which we test the predictions made by an algorithm using available patient data to determine 

possible limitations. This will be complemented by a prospective observational research that 

assesses the efficiency of the algorithm in clinical practice, which will give information about 

the performance of the algorithm with respect to the current patient care. Finally, most validity 

should be provided by randomized trials or prospective real-world studies which check whether 
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the algorithm can lead to a significant increase in clinical results and represent strong and 

reproducible evidence of its value. 

More importantly, validation is not just the ability to show predictive accuracy. An algorithm 

can be able to predict disease progression or respond well to treatment, but when used in 

clinical practice, is it likely to make tangible clinical improvements, such as longer survival or 

lower toxicity or higher quality of life? Making clinical utility will also make sure that the 

algorithm produces actionable insights that decision-making is informed and that the treatment 

selection is guided meaningfully. Through strictly validating precision treatment algorithms in 

a series of steps of algorithm evaluation, clinicians and researchers can be assured that in 

addition to predicting, these tools can make a positive contribution to patient care and thus 

close the gap between computational prediction of outcomes and clinical influence in practice. 

Practical Barriers: 

Although predictive algorithms promise utility in oncology, there are a number of obstacles 

that still restrict their application: 

 Heterogeneous data and silos: Patient data is commonly spread across various 

systems, which include electronic health records (EHRs), laboratory information 

systems, imaging archives and genomic databases. This discontinuity introduces 

obstacles to complete data integration and it is challenging to provide predictive 

algorithms with the entire range of useful clinical, molecular, and imaging data required 

to support risk stratification or treatment recommendations with accuracy. 

 Interoperability concerns: Although some standards like FHIR (Fast Healthcare 

Interoperability Resources) are aimed at supporting the sharing and exchange of 

healthcare information, their implementation is not uniform in institutions. The 

disparity in data format, software platform, and local usage practices may impede the 

effortless integration and lowers the effectiveness and dependability of AI-based 

predictive instruments. 

 Cost and access: Not every healthcare facility has the capacity to conduct a complete 

molecular testing or offer access to specific therapeutics. Such constraints make 

precision medicine pathways more applicable in under-resourced environments and, 

when combined, may produce disparities in patient care by denying certain individuals 

access to high-quality predictive analytics. 
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 Tumor evolution and sampling bias: Biopsies are usually only a single snapshot of 

tumor at a given point in time. Tumors are however dynamic and may evolve to respond 

to treatment pressures, acquire resistance or display intratumoral heterogeneity. This 

renders continuous evaluation, recurring sampling and revision of forecasting treatment 

routes vital in safeguarding accuracy and performance in clinical determination. 

8.4. ETHICAL ISSUES AND INTERPRETABILITY IN AI DECISION-MAKING 

AI in oncology also poses a major ethical concern, which should be overcome to enable safe, 

fair, and reliable implementation. The main issues are bias and fairness because models trained 

on non-representative datasets can perform poorly on a particular group of patients, worsening 

the situation of healthcare disparities. Genomic and imaging data are sensitive and, as a result, 

face a problem of privacy and data protection as informed consent and safe processing should 

be enforced. The transparency and explainability are also needed because the black-box 

predictions may lead to mistrust in clinicians and patients. Liability and accountability are still 

ambiguous, and there is no clear responsibility among AI-based errors, and automation bias 

and de-skilling are the further threats. Another issue is the problem of access and equity in case 

only well-equipped centers can launch validated AI systems. 

 

Figure 3: AI in Oncology  

Source: (https://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-025-

02369-9) 
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These risks need to be mitigated with strong interpretability, governance and best practices. 

Optimistic interpretability and after-the-fact explanation techniques (e.g., LIME, SHAP, 

saliency maps) allow clinicians to interpret model choices, and model cards, datasheets, and 

uncertainty reporting enhance transparency and responsibility. Federated learning and 

differential privacy are privacy-preserving methods that secure patient information. It must be 

ethically deployed with standardized reporting structures (TRIPOD-AI, CONSORT-AI, 

SPIRIT-AI), external validation and human-in-the-loop processes to make sure AI remains an 

aid to clinicians instead of a replacement. Oncology Multidisciplinary team, ongoing auditing 

and documentation are also effective in ensuring dependable, equitable and clinically valuable 

AI adoption. 

 Key Ethical Concerns 

Oncology AI systems raise some ethical concerns that will have to be eliminated to make sure 

their implementation is safe and fair. Discrimination and equality are major issues: models that 

were trained on non-representative data might not perform well on underrepresented groups, 

such as patients who are differentiated on the basis of sex, race, or socioeconomic status. These 

biases may have an adverse impact on care disparities and treatment outcomes in oncology. 

Privacy and data security are also paramount, because the genomic and imaging data can be 

identified in itself. Patients should be assured of their consent in regards to reusing, secondary 

analysis, and sharing of their data, which needs to be approached carefully. Trust is impossible 

without transparency, explainability; clinicians and patients require reasons that are 

understandable to AI-driven recommendations since black-box results can make confidence in 

clinical decision-making less than certain. 

Another problem is accountability and liability: in case an AI recommendation causes harm, it 

might be unclear who is to bear the liability: the software vendor or the hospital or the treating 

clinician. The legal aspects of AI-driven care are in the process of development. Other risks are 

automation bias and de-skilling since with time, too much use of AI might cause clinician 

complacency or loss of necessary skills. Lastly, there might be the problem of access and equity, 

since only well-funded centers might be able to implement validated AI systems, which could 

escalate the existing healthcare disparities. 

 Interpretability Strategies 

AI models have to be explainable to reduce ethical risks. Intrinsic interpretability Intrinsic 

interpretability uses simpler, human-readable models like Generalized Additive Models 
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(GAMs) or decision trees where possible and enables clinicians to get a direct insight into the 

decision logic. Post-hoc explanation methods include LIME, SHAP, counterfactuals, and 

saliency maps which give information on how the model has made these specific predictions. 

Model cards and datasheets are a standardized documentation, describing the intended use of 

a model, limitations, datasets and performance metrics in different patient subgroups. 

Moreover, uncertainty reporting is essential: AI predictions ought to come with a confidence 

or uncertainty score, and the low-confidence predictions ought to be forwarded to human 

inspection to avoid any possible errors. 

 Governance and Reporting Standards 

Use of AI in the clinical practice must comply with strong governance and reporting practices. 

Clear reporting of model development and clinical AI trials is directed by the established 

frameworks, including TRIPOD-AI, CONSORT-AI, and SPIRIT-AI. It is suggested that 

continuous auditing and monitoring of production be implemented with periodic bias 

evaluations and governance by governance committees made up of clinicians, patients and 

ethicists. 

Privacy-sensitive approaches, like federated learning, differential privacy and secure multi-

party computation, can enable AI models to be trained on distributed data, without revealing 

raw patient information, thus preserving privacy. Informed consent and patient communication 

are also essential: patients are to know each time AI tells their care and to know how much AI 

affects their decision-making. 

 Practical Best Practices 

To ensure ethical and reliable deployment of AI, several actionable best practices should be 

followed. AI models should be trained on diverse, well-documented datasets, with subgroup 

performance reported to detect disparities. External and prospective validation is essential 

before clinical deployment. AI should function within human-in-the-loop workflows, 

augmenting but not replacing clinician decisions. Transparent documentation, including model 

cards and dataset provenance, supports accountability and reproducibility. Uncertainty 

thresholds and fail-safe rules ensure that ambiguous cases are automatically routed to human 

review. Finally, AI development and deployment should involve multidisciplinary teams 

combining expertise from data science, clinical medicine, ethics, and law. 
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 Short Takeaway Bullets 

 AI is good at recognizing patterns in pictures and multimodal data: Artificial 

intelligence, especially deep learning algorithms, has demonstrated impressive capacity 

to identify complex patterns in medical images, genomic data, electronic health records 

among other complex multimodal data. These systems are however dependent on 

massive, heterogeneous and well-labeled datasets to be highly accurate and 

generalizable. In the absence of adequate data quality and diversity, artificial 

intelligence models may be subject to bias or low-performance in clinical 

environments. 

 Clinical utility requires external prospective validation: To make AI tools have 

significant influence in healthcare, their performance has to be shown to be valid 

beyond the original training data. External and prospective validation guarantees that 

AI forecasts are strong when using them with varied patient groups and clinical 

environments. Also, it is necessary to show that patient outcomes and diagnostic 

accuracy or net clinical benefit can be measured, and that improvements are being 

made. 

 Interpretability, quantification of uncertainty, and ethical governance: To deploy 

AI safely in the health sector, transparency should be created in decision-making 

processes by the algorithms. Interpretability enables clinicians to interpret and be 

confident to AI recommendation, whereas uncertainty quantification assists in 

estimating confidence in predictions. Furthermore, it is essential to have ethical 

oversight such as fairness, accountability, and privacy concerns to avoid hurt, prejudice, 

and unfair treatment of patients. 

 Human-AI partnership as the realistic course to clinical implementation: AI is best 

adopted by complementing, not substituting clinicians. AI can improve clinical 

judgment and efficiency by aiding the decision-making process, identifying pertinent 

patterns, and simplifying the working process. It is a collaborative model that makes 

the best of human experience and computational intelligence to achieve more safer, 

more productive and clinically actionable results. 
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